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Problem

e Inaccuracies 1n initial conditions and model deficiencies interact non-
linearly, causing numerical weather forecast errors to grow.

e With recent progress in data assimilation, the accuracy of initial con-
ditions has improved dramatically.

e Accounting for model deficiencies has become relatively more impor-
tant for data assimilation and ensemble forecasting.
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Outline

e Brief review of model error correction
e SPEEDY model
e Generation of 6-hour forecasts and errors with NCEP reanalysis

e Separation of errors into monthly, diurnal, and state-dependent
components

e Estimation and correction of model errors
e Results: our method 1s effective and computationally feasible

e Conclusions
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Background

Schemm et. al. (81, 86)

e introduced procedures for statistical correction of numerical predic-
tions when verification data are only available at discrete times

e applying corrections only when verification data were available, they
were successful in correcting artificial model errors

e reduced the small scale 12-hr errors of the NMC model

e crrors at the larger scales grew due to randomization of the residual
errors by the regression equations
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Background

Saha (1992)

e nudged a low-resolution version of the NMC operational forecast model
to estimate systematic errors

e reduced systematic errors (measured against hi-res model) by adding
artificial sources and sinks in heat, momentum, and mass

e correction during the integration and a posteriori correction were seen
to give equivalent improvement in forecasts
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Background

Klinker and Sardeshmukh (1992)

e estimated average 6-hour forecast error from analysis increments
of ECMWF operational model

e switched off each individual parameterization

e found that the model’s gravity wave parameterization dominated the
1-day forecast error
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Background
D’ Andrea and Vautard (2000)

e using a sitmple QG model, estimated tendency errors by solving for the
model forcing which minimized 6-hour forecast errors

e during forecasts, found the closest analogues to the model state from
the reference time series

e used the tendency errors corresponding to these analogues to correct
forecasts online

e improved forecasts in Euro-Atlantic region

e computationally prohibitive
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Leith (1978), first to formulate state-dependent correction procedure
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Leith (1978), first to formulate state-dependent correction procedure

e given a model: X = M(x)
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Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)

e sought an improved model of the form: x = M(x) +Lx+b
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+b

e the tendency error g of the improved model 1s given by
g :Xt_M(Xt) _LXt_b

where X, 1s the state taken as truth (e.g. reanalysis)
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+b

e the tendency error g of the improved model 1s given by
g :Xt_M(Xt) _LXt_b

where X, 1s the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing g'g
with respect to b and L
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+b

e the tendency error g of the improved model 1s given by
g :Xt_M(Xt) _LXt_b

where X, 1s the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing g'g
with respect to b and L

e by 1s a state-independent bias estimate
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+b

e the tendency error g of the improved model 1s given by
g :Xt_M(Xt) _LXt_b

where X, 1s the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing g'g
with respect to b and L

e by 1s a state-independent bias estimate

e [; X 1s a state-dependent estimate of the model error
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+b

e the tendency error g of the improved model 1s given by
g :Xt_M(Xt) _LXt_b

where X, 1s the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing g'g
with respect to b and L

e by 1s a state-independent bias estimate

e [; X 1s a state-dependent estimate of the model error

e computationally prohibitive for operational models
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Background

DelSole and Hou (1999)

e applied Leith’s procedure to a 2-layer QG model on an 8 x 10 grid
(N=160 degrees of freedom)

e perturbed the model parameters to generate ‘nature’
e resulting model errors were strongly state-dependent by design
e [eith’s state-dependent error correction extended forecast skill

e computationally prohibitive for operational use
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 22

Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

I'V. Correct the state-dependent errors.
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SPEEDY Model, Molten1 (2003)

e primitive equations, global spectral model

e contains parameterizations of condensation, convection, clouds, radi-
ation, surface fluxes, and vertical diffusion

¢ T30 horizontal resolution, 7 sigma levels

e integrates vorticity, divergence, temperature, specific humidity, and
surface pressure

e post-processed into horizontal wind, temperature, specific humidity,
geopotential height, and surface pressure on 96x48 grid, 7 pressure
levels

e dissipation and time-dependent forcing determined by climatological
SST, surface moisture, albedo, land-surface vegetation, etc.
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Generating Time Series of Model Forecasts and Errors

1982-1986 NCEP Reanalysis

— y(®) y(t+1) y(t+2) y(t+3) g
~— — —
. . . 6-hour
Xg (t+1) Xg (t+2) Xg (t+3) errors
SPEEDY
forecasts Xg (t+1) Xg (1+2) Xg (1+3)
v v
SPEEDY M(X) + xg°(t+1) M(x) + x5°(t+2)

nudged forcing

6hr

ohr
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Generating Time Series of Model Forecasts and Errors

1982-1986 NCEP Reanalysis

— y() y(t+1) y(t+2) —
SPEEDY
forecasts Xg (t+1) Xg (1+2)
6-hour =— . .
errors Xg (t+1) Xg (t+2)
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Time Series and 5-year Climatology

o x. (t) = time series of model states

* X¢ (t) = corresponding 6-hour errors

e 5-year SPEEDY 6-hour climatology given by monthly mean x.

e 5-year reanalysis climatology given by monthly mean y

e Bias given by monthly mean X_g

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 30

Our Method

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.
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Our Method: 1. Monthly Bias Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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200hPa Zonal Wind Monthly Bias

5-year Reanalysis Climatology y (contour), Bias X_g (color)
January July

200hPa SPEEDY Uwind, Jan 1982-86 [m/s] 200hPa SPEEDY Uwind, Jul 1982-86 [m/s]

e SPEEDY underestimates zonal wind on the poleward side of the win-
ter hemisphere jet.

e Exhibits large polar bias.
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700hPa Specific Humidity Monthly Bias

5-year Reanalysis Climatology y (contour), Bias X_g (color)
January July

700hPa SPEEDY SpcHum, Jon 1982-86 [g/kgq] 700hPa SPEEDY SpcHum, Jul 1982-86 [g/kg]

e SPEEDY overestimates specific humidity at lower levels in the tropics,
especially in the winter hemisphere over the oceans.

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 34

300hPa Specific Humidity Monthly Bias

5-year Reanalysis Climatology y (contour), Bias X_g (color)
January July

300hPa SPEEDY SpcHum, Jon 1982-86 [g/kgq] 300hPa SPEEDY SpcHum, Jul 1982-86 [g/kg]

[
-0.2 -0.08 -0.06 -0.03 0.03 006 008 0.2 -0.2 -0.08 -0.06 -0.03 0.03 006 008 0.2

e SPEEDY underestimates specific humidity at upper levels, especially
in the summer hemisphere.
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Our Method: 1. Monthly Bias Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.
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Our Method: 1. Monthly Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.

1. Control: Integrate biased model, x = M(x)
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.

1. Control: Integrate biased model, x = M(x)

2. Corrected a posteriori: Correct control forecast by 6-hour bias X_g

at 6 hours, 12-hour bias x¢, at 12 hours, etc.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.

1. Control: Integrate biased model, x = M(x)

2. Corrected a posteriori: Correct control forecast by 6-hour bias X_g

at 6 hours, 12-hour bias x¢, at 12 hours, etc.

3. Corrected online: Integrate model, X = M(x) + Z:gt,

x¢ is a daily linear interpolation (e.g. on July 1, x¢ = Xg(lun);xg(ml))
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I. Monthly Bias Correction

41

850hPa February 1987 Global Mean Anomaly Correlation
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I. Monthly Bias Correction

42

850hPa February 1987 Global Mean Anomaly Correlation
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e Online correction performs better than a posteriori correction.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control

U-Wind Temperature Geopotential Hgt
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e Online correction 1s most effective at lower levels.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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e Online correction 1s most effective at lower levels.

e Improvements are uniform across levels in T, across seasons by level.
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I. Monthly Bias Correction
200hPa January 1982-86 Zonal Wind Bias

Control Online Corrected Forecasts

200hPa SPEEDY Uwind, Jan 1982-86 [m

/s]

e Most of the bias 1s removed by the online correction.
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I. Monthly Bias Correction

46

850hPa January 1982-86 Temperature Bias

850hPa SPEEDY Temp, Jan 1982-86 [K]

254

EM
> zs:u

£

,\ gﬁ’_ e 35—

Control Online Corrected Forecasts

850hPa debiased SPEEDY Temp, Jan 1982-86 [K]
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e Most of the bias 1s removed by the online correction.
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Our Method: 1. Monthly Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.
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Our Method: II. Diurnal Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.
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I1. Diurnal Bias Correction

e Anomalous model error time series: x¢'(i) = x$(i) — x¢
e Anomalous model error matrix: D = [x¢' (1) xg'(2) ... x¢ (N)]

e The leading EOFs of DD' represent patterns of diurnal variability
which are poorly represented by SPEEDY.
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I1. Diurnal Bias Correction

Leading EOFs of DD', T at 925hPa, Jan 1982-1986

925hPa debiosed SPEEDY Temp Error EOF 1, Jan 1982-86 925hPa debiosed SPEEDY Temp Error EOF 2, Jan 1982-86

e Lack of diurnal forcing results in wavenumber 1 structure in the errors

e SPEEDY underestimates (overestimates) near surface daytime (night-
time) temperatures, more prominent over land
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I1. Diurnal Bias Correction

Principal Components

e Project leading EOFs onto anomalous errors (January, 1982)
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e [_eading pair of EOFs out of phase by 12 hours
e Find average strength of daily cycle over Jan 1982-86

e Compute diurnal correction as a function of the time of day
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I1. Diurnal Bias Correction

EOFs of DD '

January
1982-1986

I
-2 =15 -1 -05 05 1 1.5 z 3 -z -15% -1 -05 05 1 1.5 H 3

925hPa diurnal debiased SPEEDY Temp Error EOF 1, Jan 1987 925hPa diurnal debiased SPEEDY Temp Error EOF 2, Jan 1987

Diurnally
Corrected
1987

e Diurnal correction substantially reduces error amplitude
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Our Method: II. Diurnal Bias Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.
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Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors.

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 55

I11. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
e Anomalous analysis state time series: y'(t) = y(t) — ¥

e Anomalous 6-hour error time series: x¢'(t) = x¢(t) — x¢
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I11. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
e Anomalous analysis state time series: y'(t) = y(t) — ¥
e Anomalous 6-hour error time series: x¢'(t) = x¢(t) — x¢
e Analysis state covariance: By, (t) =y'(t) y'' (t)

e Lagged cross covariance: By, (t) =x&(t) y'' (t—1)
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I11. State-Dependent Error Estimation

57

Leith (1978) Empirical Correction Operator
e Anomalous analysis state time series: y'(t) = y(t) — ¥
e Anomalous 6-hour error time series: x¢'(t) = x¢(t) — x¢
e Analysis state covariance: By, (t) =y'(t) y'' (t)
e Lagged cross covariance: By, (t) =x&(t) y'' (t—1)

: : : ~1 .
Leith’s correction operator, given by L = Byey, By, , provides a

state-dependent correction:

X =M(x)+Lx+b
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I11. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
e Anomalous analysis state time series: y'(t) = y(t) — ¥
e Anomalous 6-hour error time series: x¢'(t) = x¢(t) — x¢
e Analysis state covariance: By, (t) =y'(t) y'' (t)
e Lagged cross covariance: By, (t) =x&(t) y'' (t—1)

: : : ~1 .
Leith’s correction operator, given by L = Byey, By, , provides a

state-dependent correction:

X =M(x)+Lx+b

Problem: Direct computation of Lx requires O(N?) floating point oper-
ations every time step!
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I11. State-Dependent Error Estimation

Implementation

e DelSole and Hou (1999) used Leith’s state-dependent empirical cor-
rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).
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I11. State-Dependent Error Estimation

Implementation

e DelSole and Hou (1999) used Leith’s state-dependent empirical cor-
rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).

e For the SPEEDY model, N = O(10°), so computation of Lx’ requires
O(10%) floating point operations every time step.
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I11. State-Dependent Error Estimation

Implementation

e DelSole and Hou (1999) used Leith’s state-dependent empirical cor-
rection to extend forecast skill up to the limits imposed by observation
error, for a very simple model (N = 160 degrees of freedom).

e For the SPEEDY model, N = O(10°), so computation of Lx’ requires
O(10%) floating point operations every time step.

e This operation would be prohibitive for operational forecast models
where N ~ O(107).
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Estimating and Correcting Global Weather Model Error

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors.
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Estimating and Correcting Global Weather Model Error

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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I11. State-Dependent Error Estimation

First step 1n our new approach:
Sparse approximation of the Leith correction operator

e univariate covariances generate block diagonal structure
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Estimating and Correcting Global Weather Model Error

I11. State-Dependent Error Estimation

First step 1n our new approach:
Sparse approximation of the Leith correction operator

e univariate covariances generate block diagonal structure

e Jocalization introduces sparsity to each block
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I11. State-Dependent Error Estimation

66

First step 1n our new approach:
Sparse approximation of the Leith correction operator
e univariate covariances generate block diagonal structure

e Jocalization introduces sparsity to each block

o

100 200 300 400 500
SVD mode

\os Explained variance of the SVD
§ i corresponding to u at 200hPa for
S 0.6 .
< the dense and sparse Leith operators.
£04
& 0.2 ===gparse L
—dense L
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Estimating and Correcting Global Weather Model Error

II1. State-Dependent Error Estimation

First step 1n our new approach:
Sparse approximation of the Leith correction operator

e univariate covariances generate block diagonal structure

e Jocalization introduces sparsity to each block

1

Explained variance of the SVD
corresponding to u at 200hPa for
the dense and sparse Leith operators.

o
©

o
o))

o
~

Explained Variance

o
\S)

===gparse L
==dense L

100 200 300 400 500
SVD mode

¢ 400 modes required to explain 90% of variance in dense L

¢ 40 modes required to explain 90% of variance in sparse L
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Estimating and Correcting Global Weather Model Error

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Estimating and Correcting Global Weather Model Error

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the anomalous error & state covariance, Byy = ULV '
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the anomalous error & state covariance, Byy = ULV '

e identifies pairs of spatial patterns or EOFs (ux and vy) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the anomalous error & state covariance, Byy = ULV '

e identifies pairs of spatial patterns or EOFs (ux and vy) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.

Principal Components: project error and state anomalies onto EOFs

a (t) = x7(t) - uy
bk(t) = X’(t) - Vi
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the anomalous error & state covariance, Byey = ULV '

e identifies pairs of spatial patterns or EOFs (ux and vy) that explain as
much of possible of the mean-squared temporal covariance between
the anomalous error and state.

Principal Components: project error and state anomalies onto EOFs
ak(t) = Xe/(t) - Uy
bk<t) = X’(t) - Vk

Heterogeneous correlation maps:

p[x”, by = ( G;( )uk
b:(t)
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I11. State-Dependent Error Estimation

74

1982-86 error (color) and state (contour) coupled signals

e signals exhibit clear correlation in local structure
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Estimating and Correcting Global Weather Model Error

I11. State-Dependent Error Estimation

75

1982-86 error (color) and state (contour) coupled signals

925hPa SPEEDY Temp, Jan 1982-86

e signals exhibit clear correlation in local structure
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Estimating and Correcting Global Weather Model Error

Our Method: III. State-Dependent Error Estimation

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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Estimating and Correcting Global Weather Model Error

Our Method: IV. State-Dependent Correction

Generate time series of 6-hour model forecasts and errors relative to the
NCEP reanalysis using a simple but realistic GCM.

Separate the 6-hour errors into monthly, diurnal, and state-dependent
components.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

I'V. Correct the state-dependent errors.
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IV. State-Dependent Correction
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The control model:

XzM(X)
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IV. State-Dependent Correction

79

The control model:

X =M (X)
The state-independent online corrected model:
X

X = M(X) Al
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IV. State-Dependent Correction

80

The control model:
X = M(X)

The state-independent online corrected model:

X6
At

Leith’s state-dependent corrected model given by:

x =M(x) +

€

. X6 /
X—M(X) —I—At+LX
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Estimating and Correcting Global Weather Model Error

IV. State-Dependent Correction

The control model:
X =M (X)
The state-independent online corrected model:

- X
X—M(X)—I—At

Leith’s state-dependent corrected model given by:

X
At

Our low-dimensional state-dependent corrected model 1s given by:

x=M(x) +-2+Lx

Ok |

S e SN

k=1
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Estimating and Correcting Global Weather Model Error

IV. State-Dependent Correction

Our low-dimensional state-dependent corrected model 1s given by

=00+ 5 L ()]
x = M(x X U | — | Vi X | —
0 = : 5 K At

—_— bk

During forecasts, the anomalous model state vector can be projected

onto a few (K~10) dominant anomalous model state signals vy.
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IV. State-Dependent Correction

Our low-dimensional state-dependent corrected model 1s given by

— K - Ok / 1
o [ fa(

k=1 bﬁ

During forecasts, the anomalous model state vector can be projected
onto a few (K~10) dominant anomalous model state signals vi. The

term

K ~ o ,
Z Uk (—_) Vk - X
k=1 \ /bﬁ

1s the best representation of the original 6-hour forecast error anomalies
x“ in terms of the current anomalous forecast state x'.
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IV. State-Dependent Correction

200hPa V-wind
Error (shades)
and State (contour)

12 hr forecasts

debiased low-d corrected
\ \

200hPa SPEEDY Vwind January 1, 12z 1987

200hPo SPEEDY Vwind, Jon 1982-86

=089 =06 =03 0.3 0.6 0.8

L e —
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IV. State-Dependent Correction

85

925hPa SPEEDY SpcHum, Jul 1982-86

925hPa Specific Humidity .| gy 2550
Error (shades) ey
and State (contour) .

L

12 hr forecasts

debiased low-d corrected 2 e
\ \ -0.8 -0.6 -0.5 ©03 0.6 03

925hPa SpcHum July 10, 12z 1987 925hPa low—d corrected SPEEDY SpcHum July 10, 12z 1987
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IV. State-Dependent Correction

We measure the forecast improvement using Leith’s (univariate) dense
and sparse correction operators and our low-dimensional approxima-
tion.

Dense Leith | Sparse Leith | Low-Dim
Flops per time step O(N;)) O(N7,)  O(Ng)

Global Improvement| —8% (-4hr) 2% (1hr) 4% (2hr)

N. American Improvement| —6% (-3hr) 4% (2hr) | 6% (3hr)

Chart contains average January 1987 improvement over state-independent
corrected forecasts. Correction 1s more effective in regions where the
heterogeneous correlations p are large.
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori

e Time-dependent correction reduces amplitude of diurnal errors
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
e Time-dependent correction reduces amplitude of diurnal errors
e Our method of low-dimensional state-dependent correction:

e improves forecasts, more notably where correlations are large
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
e Time-dependent correction reduces amplitude of diurnal errors
e Our method of low-dimensional state-dependent correction:

e improves forecasts, more notably where correlations are large
e gives better results than Leith’s correction operator
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
e Time-dependent correction reduces amplitude of diurnal errors
e Our method of low-dimensional state-dependent correction:

e improves forecasts, more notably where correlations are large
e gives better results than Leith’s correction operator
e is 10 orders of magnitude cheaper! (SPEEDY implementation)
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
e Time-dependent correction reduces amplitude of diurnal errors
e Our method of low-dimensional state-dependent correction:

e improves forecasts, more notably where correlations are large
e gives better results than Leith’s correction operator
e is 10 orders of magnitude cheaper! (SPEEDY implementation)

e should work easily with existing data assimilation and ensemble
schemes
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Future

e Implement with data assimilation and ensemble schemes

e Test implementation on NCEP operational model (?)

e Reduce jumps 1n reanalysis climatology due to changes in observing
system

Research supported by a NOAA THORPEX grant
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